

The Ohio State University

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

On-Field Ohio !

Using the Revised Ohio P-Index

Dr. Elizabeth (Libby) Dayton, Shane Whitacre, Dr. Jeff Hattey

Revised Conservation Practice Standard Nutrient Management, Code 590 USDA-NRCS-Ohio

Gulf of Mexico

Increased Emphasis on

<u>Ohio P Risk Index</u>

which includes

Western Lake Erie

Tri-State Fertilizer Recommendations 4RsNutrient Stewardship

Current Ohio P-Index

Phosphorous Index Risk Assessment Procedure Worksheet

	Phosphorous Vulnerability Values					Sub - Value	
1.Soil Erosion	Soil Loss (Tons/Acre/Year) X 1.0						
2. Connectivity to Water. Does concentrated flow (via a defined waterway, tile inlet, or surface drain) leave the site?	NO, and the site is not adjacent to an intermittent or perennial stream. Value = 0	NO, but the site is adjacent to an intermittent or perennial stream. Value = 4.0	Yes, but the site is not adjacent to an intermittent or perennial stream. Value = 8.0	Yes, and the site is adjacent to and/or the concentrated flow outlets into an intermittent stream or through a tile inlet. Value = 12.0	Yes, and the site is adjacent to and/or the concentrated flow outlets into a perennial stream or through a tile inlet; OR Outlets to a pond or lake within 1 mile. Value = 16.0		
Runoff Class		See Runoff Class Matrix					
4. Soil Test Bray- Kurtz P1 PPM	Bray – Kurtz P1 (PPM) X (0.07)						
5. Fertilizer P2O5 Application Rate		Fertilizer P2O5 Applied (Lbs/Acre) X (0.05)					
6. Fertilizer P2O5 Application Method	0 Applied Immediate Incorporation Or Applied on 80% Cover Value = 0 Value = 0.75		Incorporation < 1 Week Veek & < 3 Or Or Applied on 50- 80% Cover Applied on 30- 49% Cover Value = 1.5 Value = 3.0		No Incorporation Or Incorporation > 3 Months Or Applied on < 30% Cover Value = 6.0		
7. Organic P2O5 Application Rate		Available - Mar	nure / Biosolids P2C	5 Applied (Lbs/Ac) X	(0.06)	8	
8. Organic P2O5 Application Method	0 Applied	Immediate Incorporation Or, Applied on 80% Cover	Incorporation < 1 Week Or, Applied on 50-80% Cover	Incorporation > 1 Week & < 3 Months Or, Applied on 30-	No Incorporation Or Incorporation > 3 Months Or, Applied on < 30% Cover		

P transport into continues to be a water quality concern for Ohio

Develop an index that:
Identifies where P is lost
Quantifies how much P is lost
Uses properties of all soils
Calculates soil loss (RUSLE2)
Soil Test P
Fertilizer/Manure Inputs
Incorporates 4Rs

On-Field Ohio! OSU / USDA-NRCS

Long-term, Field-Scale Average Estimate Erosion Potential P Loss

Quantifies how voluntary changes in practices contribute to P runoff reduction goals

Evaluate Relationship Between On-Field Properties & Practices & Edge-of-Field P Runoff

Special Thanks to Participating Farmers

Erosion Potential

Revised Universal Soil Loss Equation v2 (RUSLE2)

Why Soil Loss (t/a/y)? Strong Binding of Phosphorus to Soil Particles

Muddy Runoff Water

- How much sediment?
- How P rich is the sediment?

Measurements

Surface & Tile P Runoff Concentration

Particulate (RPP)

Total (RTP) unfiltered/digested

) Dissolved (DRP) sted filtered Runoff Flow Volume

10

Measured vs Estimated Surface Runoff DRP (Ib/A)

On-Field Ohio! On-line Calculator

Outputs

- Erosion (t/a/y)
- Particulate P (lb/A)
 - Surface + Tile
- Dissolved P
 - Surface + Tile
- Dissolved P Fertilizer/Manure (Ib/A)
- Save, Print Report

On-Field Ohio!

On-Line Tool Functions

Find New Field or Import a Stored Field

On-Field Ohio

	Choose Field Crop Rotation Field Info Nutrients Results	
	Field: Example	Start a New Field
	Run date: 7/11/2018	Save Field Info
	Nutrient description: CY1: Spring manure 100 lb P2O5	
	Total acres: 73.42	

Average slope: 1.03%

Map Unit	Location	Dominant Soil Type
1	Putnam County (29.02 A, 0.5% slope)	Toledo silty clay loam
2	Putnam County (25.02 A, 1% slope)	Fulton silty clay loam, 0 to 2 percent slopes
3	Putnam County (9.52 A, 1% slope)	Del Rey silt loam, 0 to 2 percent slopes
4	Putnam County (3.31 A, 4% slope)	Lucas silty clay loam, 2 to 6 percent slopes
5	Putnam County (3.04 A, 1% slope)	Digby loam, 0 to 2 percent slopes
6	Putnam County (1.41 A, 1% slope)	Haskins loam, 0 to 2 percent slopes
7	Putnam County (0.85 A, 9% slope)	Lucas silty clay loam, 6 to 12 percent slopes, moderately eroded
8	Putnam County (0.78 A, 1% slope)	Kibbie silt loam, 0 to 2 percent slopes
9	Putnam County (0.46 A, 0.5% slope)	Lenawee silty clay loam, 0 to 1 percent slopes

Results Shows

- Field Name and Rotation & Nutrient Descriptions
- Acreage and Weighted Avg. % Slope Steepness
- Map Units with % Acreage

AND ENVIRONMENTAL SCIENCES

On-Field Ohio

Choose Field Crop	Rotation Fiel	ld Info Nutrie	nts Results
Parameter	Results for Each Crop Year (CY) and Average for Rotation		
	CY 1	CY 2	Rotation Average
Erosion (t/a/yr)	0.937	0.332	0.634
Soil Tillage Intensity Rating (STIR)	106.6	2.6	54.6
Mehlich 3 P (ppm)	1.0	1.0	1.0
	Runoff P (Ib	/A)	
Surface Particulate P	0.545	0.251	0.398
Surface Dissolved P	0.003	0.004	0.004
Surface Dissolved P due to Fert. App.	0.000	0.000	0.000
Surface Dissolved P due to Man. App.	2.338	0.000	1.169
Total P Loss	2.887	0.255	1.571

<u>Results</u>

- Each Parameter
- Each CY & Rotation Avg.,
- Download Report in pdf or CSV

Download CSV Report

Download PDF Report

Results Example

Demonstrate How Voluntary Practices Achieve Target Reduction

Power of Comparison

Example: Soils with 2 – 4% Slope Compare rotation average On-Field Ohio! Results for corn/soybean rotation

CMS A: Fall chisel, spring disk & field cultivate corn, no-till soybean

CMS B: No-till corn, no-till soybean

Soil test P (15, 50, 150 mg/kg, Mehlich3-P)

Phosphorus Loss Partitioned by STP and CMS

STP15, SPP: NT-C_NT-S 72% Reduction

Conclusions

Major Shift for Ohio P Risk Index Qualitative to Quantitative

- Need to REDUCE P load to Ohio surface waters
 Reduce Erosion
 Reduce Soil P Levels
- CMS comparisons allow farmers to prioritize resources in effective management decisions to reduce P loss and soil erosion
- Production practices are receiving increased external review. Producers must improve Performance, we Have to Get it Right !

On-Field Ohio!

Thank you

manual of hits and the parties

Quick Start Guide

- Requirements To Begin a Session
 - o Internet connection to https://nutrientmanagement.osu.edu/
 - Input information
 - Field location
 - Planned crop rotation
 - Soil test phosphorus (STP) in Mehlich 3 or Bray-1
 - Soil organic matter (optional)
 - Historical crop yield or projected yield goal (optional)
 - Field drainage history
 - Planned fertilizer/manure application method, placement, time and amount
- Choose Field
 - $\circ\;$ Locate field in map tool, directions are on the bottom of the screen
 - o Draw field the boundaries, follow directions below map
 - o Name the field:

Note: Run names consist of 1. field identifier, 2. date 3. rotation management description and 4. nutrient plan descriptions

- $\circ~$ Select the "next" button to load soil survey information
- o Select the "next" button again after the soil survey map is drawn to move to the Crop Rotation screen

Crop Rotation Information

- $\circ~$ From dropdown menu choose number of years for crop rotation template
- o Select a crop production template from the management dropdown menu that best describes the production system
- o Amend operations as necessary using searchable dropdown menus
- o Adjust dates of operations using edit button beside each line

Note: Crop years run Nov.1 to Oct. 31

- Add operations by filling in the bottom blank line and then choosing the green "+" button. Delete an operation by selecting the red "x" button
- o Adjust yield potential
- o Provide rotation management description that is meaningful, it becomes part of the name of the "run" as described above
- $_{\odot}~$ Select the "next" button to move to the Field Info screen

• Field information

- $\circ~$ Select the "yes" or "no" button to identify use of tile drainage
- $\circ~$ Use the default soil organic matter or input a measured value if available
- $_{\odot}~$ Input the soil test P (STP) value an appropriate units from the dropdown menu

Nutrient Management Practices: This represents the 4Rs of nutrient stewardship

- o Press "ADD+" button for in the appropriate crop year (CY) to apply fertilizer, liquid or solid manure
- o Select season (Right time) when fertilizer will be applied. If the fertilizer is split, press "ADD+" again to open a second input line
- $\circ~$ Input the quantity (Right amount) of P fertilizer or manure (Right source) applied

THE OHIO STATE UNIVERSITY

- o Choose the placement method (Right placement) from the dropdown menu
- $\circ~$ Input the incorporation depth in inches
- o Provide a meaningful nutrient plan description
- $_{\odot}\,$ Select the "next" button to move to the Results screen

Results and Data Output

- Data download
 - Upon completing a field scenario, it is recommended the user chose "Save Field Info" so information from the most recent analysis is retained as a file with the identifier of OFO_date_GMT_.json
 - Users may find it useful to rename the *.json file for future reference
 - All data generated from On-Field Ohio <u>BELONGS TO THE USER</u>, the only copy of the output data resides where downloaded by the user
- $\circ~\mbox{Results}$ are provided in three formats
 - Screen Display
 - CSV (excel) download. Press "Download CSV Report" CSV outputs can be used to compare what-if scenarios to evaluate management practices
 - PDF Format: To download a single field/scenario in a pdf format Press "Download PDF Report
- $_{\odot}\,$ For each CY# and averaged across the rotation, the user will receive estimates of:
 - Erosion (t/a/yr)
 - Soil Tillage Intensity Rating (STIR)
 - Mehlich3 P (ppm)
 - Surface Particulate P (lb/A)
 - Tile Particulate P (lb/A)
 - Surface Dissolved P (lb/A)
 - Tile Dissolved P (lb/A)
 - Surface Dissolved P due to Fert. App. (lb/A)
 - Surface Dissolved P due to Man. App. (lb/A)
 - Total P Loss (lb/A)
- Next Steps
 - Congratulations, you have completed a scenario (run) in an OFO session. The value of OFO is to estimate P loss from a field then compare to alternative CMS and nutrient
 - management practices that reduce P loss for the field
 - The information from this scenario was saved in the "OFO_date_GMT_.json" file. See the detailed instructions (pg. 6) for importing this information to compare succeeding runs.

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES **On-Field Ohio Results**

FSR-1 (9/12/2018) Rotation: Chisel corn, NT-soybean

Nutrients: STP 15 ppm Spring DAP 255 lb/ac P205 Surface No Incorp County: Madison

Total Acres: 28.34

Map unit 1 (11.62 A, 41%): Crosby-Lewisburg silt loams, 2 to 6 % slope Map unit 2 (8.91 A, 31%): Kokomo silty clay loam, 0 to 2 % slope Map unit 3 (5.01 A, 18%): Crosby-Lewisburg silt loams, 0 to 2 % slope Map unit 4 (2.8 A, 10%): Odell-Lewisburg complex, 0 to 2 % slope Weighted Avg. slope: 1.4

	CY1	CY2	Rotation
			Avg.
Erosion (t/a/yr)	1.345	0.633	0.989
Soil Tillage Intensity Rating (STIR)	24	3	13
Mehlich 3 P (ppm)	15	15	15
Surface Particulate P (lb/A)	1.746	0.992	1.369
Tile Particulate P (lb/A)	0.193	0.193	0.193
Surface Dissolved P (lb/A)	0.061	0.063	0.062
Tile Dissolved P (lb/A)	0.049	0.049	0.049
Surface Dissolved P due to Fert. App. (lb/A)	1.011	0	0.505
Surface Dissolved P due to Man. App. (lb/A)	0	0	0
Total P Loss (lb/A)	3.06	1.3	2.18